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Context 

Chartered to survev the subiect of what is 
J J 

already known and to create an integrated 
strategy for fitture solar system exploration 
Key themes identified: 
- The First Billion Years of Solar System History 
- Volatiles and Organics: The Stuff of Life 
- The Origin and Evolution of Habitable Worlds 
- Processes: How Planets Work 
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Context 

Example missions were identified to address 
these themes 
- Some are doable with today’s technology 
- Some require near term technology 
- Some require significant advances in technology 
The exploration of the solar system is a 
technically challenging and expensive 
endeavor. 
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Catch up with Comet Tempe1 1 on July 4, 
2005 
Send 370 kg probe to impact surface 
Observes and records data from material 
dissipated into space and fresh material 
exposed on surface 
Mission duration 19 months 
- Science portion 1-2 days 
- Data return 30 days 
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Dawn Mission 

Visiting 2 protoplanets in search of the role 
of size and water in determining the 
evolution of the planets 
11 month orbital period around each of 
Vesta and Ceres 

. .  
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LanderdProbes 
JPL 

Landers and Probes 
are used for extreme 
environments . .  

- Temperature - 
Venus 

- Radiation - 
IO/Europa 

- Pressure - Jupiter 
- Shock - Deep Space 

2 (Mars) 

Outer Planets 
Multiprobes 
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LanderdProbes 

Dumb landing/ 
decending systems - 
Air Bags: Mars 
Pathfinder, Parachute : 
Huygens, Galileo Probe 

descending systems - 
Rocket Descent: Mars 
98, Viking, Mars 
Science Laboratory 

Smart landing/ 

Huygens - Titan 
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LanderdProbes 

Landers and Probes are 
extremely volume, power 
and mass constrained 
Usually have to relav data 
to mothership 
orbiter 
Small buffers 

J . such as an 

for science 
data storage and computer 
processing 
Must survive environmental . requirements 

Smart Lander 
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Neptune & Triton Missions JPL 
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Flyby Missions 

Large flyby velocities 
- data acquired very rapidly 
- Little time for data 

compression during . . .  acquisition 

maneuvering during science 
- Attitude control for 

acauisition is computer 
I 

intensive 

On-board data storage 
required to hold data until it 
can be returned after flyby 

Europa Flyby 
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Orbiters 

Long one way light time 
Data return limited by 
telecommunications state- Neptune Orbiter 
o f-the-art 
- State of the art gets about 1 

Mb/s fkom 6 AU 
Deep Space Network a 
shared resource 
Further distances severely 
limit rate requiring more 
data stored on board until it 
can be returned 
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On-Board Autonomv 

Entry-Descent-Landing requires intense 
computer resources 
- Extensive data taking and reconciliation by 

computer algorithms require A fast memory 
access times 

Rendezvous and docking requires tight 
control loops for attitude control with 
stored 
Interferomeuy require SI precise 
and position determination 

tracking 
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Environmental Factors 

Solar Flares and Galactic Cosmic Ray 
environments create havoc for memory data 
retention and data integrity 
- SEES and SEUs drive computer system reset rates and 

mass memory system EDAC requirements 
Missions to the Jovian systems require radiation 
tolerance or hardness 
- 100 Krad tolerable 
- 1 Mrad much better 
- Example - FLASH for mass memory on Europa 

Orbiter required approximately 4 kg TungstedCopper 
shielding per 2 Gbit 
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Jupiter Orbiters 

Jovian system of high 
import to planetary 
science community 
Environment harsh for 
memory systems 
Large operations teams 
required to effectively 
compensate for on- 
board anomaly 

Io Volcano Orbiter 

Jupiter Polar Orbiter 
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0 Mission Radiation Environment JPL 
- 

6 / 

Over 30 day 
Science mission 

5 In Europa orbit 

t L  1 3 

3.2 Mrad 
Over 1-2 years 
in Jupiter orbit 
before EO1 

10-12 year 
duration 

2 

I 

Europa 
Orbiter 
(x2000: 

ed Mi; 

The Europa Orbiter total dose environment is 
harsh compared to current experience 
- At Europa an astronaut inside an EVA 

suit receives a lethal dose every 12 
minutes 

The Europa Orbiter must operate with high 
reliability during the 30 day mission 
- Science objectives 
- Achieve quarantine orbit 

Impact 
- High technology, high risk, high cost 

electronics development to reduce risk 
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Environmental Factors 

Many mass memory chips only available 
from commercial manufacturing lines 
- Lose insight into manufacturing processes 
- Not consistent from lot to lot 
- No traceability to investigate failures 
- Less stringent screening and life testing 

requirements 
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Data Storage Technologies JPL 

Cap . 

A Small Historical Perspective 

1.8Gb 2.5Gb 

I I t e m  I MGN 1 CAS 

Media  Tape DRAM 

M a s s  

Qty I1/3 Mile 

22kg 
I 28V 

640 
12w, 
28V 
17kg 

I Size 1 16x12~8  I 1 6 x 8 ~ 7  
I (inches) I (inches) 

t I I 

I VOLATILE N Y - 
1 1/4/02 NVM Symposium 

MPF 

2Mb 

EPROM 

80 

7 w  
5,12V 
4kg 

6U VME 
(2 cards) 

N 

x2000 

2Gb 

Flash 

20 
3w 
3.3v 
2209 
1.7kg 

(shield) 
3u PCI 

N 
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Data Storage Technologies AJPL 

0 

0 

0 

0 

0 

0 
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Major Drivers 

Mas s/Density 
- Space missions are constrained by current 

launch capabilities - what can be launched 
- Defined by orbital mechanics 
- Can directly effect flight time to target 
- Always severely mass constrained 
- The less engineering systems weigh, the more 

science for the dollars 
- Orbiting bodies or landing masses require 

significant amounts of infrastructure mass 
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Major Drivers 

Power 
- Solar power drops off as square of distant from 

sun 
- Nuclear power required for some missions 
- Therefore, deep space missions require low 

power electronics 
Volume 
- Constrained by launch vehicle shroud 
- Ultimately translates to mass or performance 
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Major Drivers 

Speed 
- Access time extremely important to get best 

performance from processors 
RadiatiodSEE performance 
- Jupiter deemed important target, need radiation 

tolerant/hard electronics 
- Deep space missions need to endure GCR and 

solar flares 
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Future Needs 

Super Dense Volatile Memories 
- Fast access time 
- Radiation hardened 
- Keep pace with computer processor improvements 

Dense Non-Volatile Memories 
- Prime science data storage 
- Lowpower 
- Large read/write cycles for long mission engineering 

data storage 
- Radiation hardened 
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